# The Internet of Things in a Cellular World

"Everything is connected!!!"



John Bews

## The Internet of Things in a Cellular World

## Agenda

- IoT Concept
- Cellular Networks and IoT
- LTE Refresher
- Reducing Cost and Complexity
- Improving Coverage
- Lowering Power Consumption
- Cellular IoT Gotcha's
- Summary



## What is the Internet of Things Concept?



#### If you can ....

- identify the thing
- capture data from it
- send that data to a server

#### Then you can .....

- offer a range of services
- to all kinds of applications
- using that data

#### Things include....

- machines, people, animals, cars, etc....
  - Some Things have high data rate requirements....security systems, telemedicine
  - Some Things have low data rate requirements...telemetry
  - Some Things need real time feedback....smart cars
  - Some Things don't care about delays....smart meters

#### So how do Cellular Networks do IoT?

#### Cellular Networks and IoT

#### Where does Cellular IoT sit in this range of services.....

- 4G LTE does M2M high speed data rates well Cat-4 to Cat-16 Upto 1Gbps DL.
- 4G LTE has wide area coverage 700MHz, 850Mhz, 900MHz
- 4G LTE has good latency less than 100ms

(M2M)

- Current LTE devices are costly for low speed data compared to Zigbee & LoRa.
- Zigbee & LoRa have limited coverage compared to LTE
  - LTE needs a cheap solution for low speed data applications.

#### **3GPP** is the standards body for LTE. - 3GPP have introduced new IoT features to the LTE standards.



#### Lets look at this in detail



- How do we achieve Low Cost/Low Complexity?
- How do we achieve Enhanced Coverage?
- How do we achieve Low Power Consumption?
- What are the gotcha's?

But first a LTE refresher!!!

## A quick LTE Refresher



The IoT standard is going to modify many of these......

How do we reduce cost and complexity?

• Reduce Bands: Less switches and filters – Only do L700 or L700+L1800

• Reduce Bandwidth: Less compute power – Use 1.4MHz or 200kHz segment

Reducing Complexity
Reduces Performance

- Reduce Modulation Complexity: Less compute power QPSK or QPSK+16QAM
- Make Half Duplex: Less filters + less compute power Full Duplex Optional
- Reduce Antennas: Less antennas are cheaper

| Feature                             | Cat-4    | Cat-1   | Cat-M1            | Cat-NB1           |
|-------------------------------------|----------|---------|-------------------|-------------------|
| Supported duplex modes              | FD       | FD      | FD or HD          | HD Only           |
| UE bandwidth (inc guard band) [MHz] | 20 MHz   | 20 MHz  | 1.4 MHz (6 RB's)  | 200 kHz (1 RB)    |
| DL peak rate [Mbps]                 | 150 Mbps | 10 Mbps | 800kbps / 300kbps | 230kbps (~20kbps) |
| UL peak rate [Mbps]                 | 50 Mbps  | 5 Mbps  | 1 Mbps / 375 kbps | 250kbps (~60kbps) |
| Highest DL modulation scheme        | 64QAM    | 64QAM   | 16QAM             | QPSK              |
| Highest UL modulation scheme        | 16QAM    | 16QAM   | QPSK              | QPSK              |
| Maximum number of DL Spatial layers | 2        | 1       | 1                 | 1                 |
| Number of receive antennas          | 2        | 2       | 2 or 1            | 1                 |
| Maximum transmit power [dBm]        | 23 dBm   | 23 dBm  | 23 dBm or 20 dBm  | 23 dBm or 20 dBm  |

Speed Impact

**Coverage Impact** 

## How do we achieve Enhanced Coverage

- Concept: Introducing low data rate repetition of data blocks allows energy accumulation at UE.
  - Lower data rates give more sensitivity
  - More repetitions gives more sensitivity
  - Introduces inefficiency and increases latency
- Standard LTE: Most channels are intended for single transmission only
  - Maximises the efficiency and minimises latency
- **IOT LTE:** Most channels use repetitive transmissions to improve the sensitivity
  - This reduces efficiency and increases latency
  - Only do as much repetitions as necessary
  - Cat-M1 has Standard Mode, Enhanced Mode A and Enhanced Mode B 16QAM or QPSK
  - Cat-NB1 uses even more enhancement + data rate limited to QPSK only



#### Cat-M1 device must support:-

- 2 x Rx antennas
- +23dBm Tx power....or get reduced coverage!!!!

Link Budget:
The LOT Link budget

The IoT Link budget matches that for Zigbee and LoRa

#### **Network Coverage:**

LTE has a much bigger network coverage so you probably won't need all of it.

- 1 x Rx antenna reduces coverage by ~4dB
- +20dBm reduces coverage ~3dB

## How do we achieve Low Power Consumption?

#### Reduce Device Tx Power:

- Standard LTE: +23dBm Max
- LTE IoT: Choice of +23dBm or +20dBm Max Mainly set by the manufacturer
- LTE IoT: Introduces Power Saving Mode (PSM)
  - Standard LTE uses Discontinuous Rx but still Idle
  - Discontinuous Rx .....plus Power Saving Mode (PSM)
    - Device goes into deep sleep for periods
  - Extended Long Discontinuous Rx PSM
    - Devices goes into deep sleep for extended periods

R12 Power Save Mode

• Battery Life: Target for Cat-NB1: 10+ years of battery life.



R13 Extended Long DRX



#### What are the Gotcha's

- Reduced Bands: Make sure your IoT device uses the band used by your carrier for IoT (700 or 900MHz)
- Reduced Tx Power: 20dBm reduces coverage by ~3dB.
  - Cat-M1 & Cat-NB1 could be 23 dBm or 20dBm Make sure you get the right version.
- Half Duplex: Cat-M1 Half duplex means reduced speed
  - If you want greater than 375kbps then you need full duplex or a Cat-1 device
- Reduced Antennas: Cat-M1 1 antenna reduces downlink coverage by 3-4dB...no impact on uplink
  - If you need better coverage get the 2 antenna device....or go to CAT-NB1
- Stationary Fading Impact: Devices may not move Could be sitting in a null reduced coverage
  - Multi band devices might be in a null on one band but ok in another band.



#### What are the Gotcha's

- Poor Antennas: Compact antennas in small devices will have reduced coverage
  - Some devices have external antenna option something external will be a lot better than an integral antenna buried in the a device. Understand your environment.
- **Poorly Located Devices:** Make sure you understand your environment
  - Devices may be located deep inside building or even underground in a water meter –.
- Battery Life: If you transmit a lot of data you won't get 10 years of battery life.
  - Only Cat-NB1 low data rate devices are really suitable for battery operation.
  - Try and make them go into power saving mode for as long as possible.
- IoT Device Modules: Some modules are interchangeable.
  - Some module manufacturers use the same daughterboard for Cat-1, Cat-M1 & Cat-NB1
  - Note some chip manufactures use the same hardware for Cat-M1 & Cat-NB1
  - If you find you need more speed just change up a device category.











### **Cellular IoT Summary**

- Range of Devices: Cellular IoT offers a complete range of devices from ultra high speed to ultra low speed not just low speed
- Coverage: Cellular IoT coverage is everywhere you have 4G coverage and more!!!
- **Operating Environment:** Cellular IoT uses the extra sensitivity of the device to make up for the poor operating environment
- **Cost**: Cellular IoT devices will be cheap due to reduced complexity effectively competing with Zigbee and LoRa
- Gotcha's: You need to understand the performance trade-offs

